
Source of Acquisition
NASA Goddard Space night Center

A Framework for Managing Inter-Site Storage Area
Networks using Grid Technologies.
Fritz McCall- UMIACS, fmccall@umiacs.umd.edu
Ben Kobler- NASA GSFC, ben.kobler@nasa.gov
Mike Smorul- UMIACS, toaster@umiacs.umd.edu

Abstract

The NASA Goddard Space Flight Center and the University of Maryland Institute for
Advanced Computer Studies are studying mechanisms for installing and managing
Storage Area Networks (SANs) that span multiple independent collaborating institutions
using Storage Area Network Routers (SAN Routers).
managing inter-site distributed SANs that uses Grid Technologies to balance the
competing needs to control local resources, share information, delegate administrative
access, and manage the complex trust relationships between the participating sites.

We present a framework for

Introduction

A Background Introduction to SAN Routing

SAN Routers that use protocols like iSCSI, FCIP, and iFCP to interconnect
geographically distributed SANs over high-speed Internet Protocol (IP) networks are
typically deployed to support business continuity and disaster recovery for applications
that:

0 Replicate data between data centers that are connected over wide-area IP
networks in order to increase data availability or to support efficient Disaster
Recovery [11
Extend SAN connectivity within the data center or to remote sites within a
metropolitan area using IP networks as a ubiquitous interconnect for the purpose
of server clustering, LAN-free remote tape backup, or remote data access. [11
Expedite adoption of networked storage by reducing the cost of the equipment
and expertise needed to deploy a SAN infrastructure based soley on Fibre-
Channel connectivity. [I]

Deployments like these represent the state-of-the-art for SAN extension technologies in
production environments. Basic data transfers for these applications proved to be
scalable and robust on 1 0-Gigabit networks with transcontinental latencies during data
transfer exhibitions at SC2002 [2] [3].

There is also a growing interest in running shared file systems over IP S A N s between
geographically distributed sites in order to support high-performance, data-intensive, and
grid computing. Although these applications are much more experimental than those
described above, previous work presented at MSST2003 demonstrated the feasibility of
running the CentraVision File System (CVFS) and the Global File System (GFS) over IP
SANs that connected the Goddard Space Flight Center, the University of Maryland, and

the Gilmore Creek Alaska Ground Station Facility [4]. Related work at the San Diego
Supercomputer Center and on the Teragrid showed the feasibility of running the Global
Parallel File System over a 10 and 30 Gigabit-Ethernet IP networks that connected the
San Diego Supercomputer Center (SDSC), the National Center for Supercomputing
Applications (NCSA) and the show floors at SC2003 and SC2004. [5],
both the Teragrid and the Distributed European Infrastructure for Supercomputing
Applications began to deploy the first production shared global file systems [6].

In the past year,

The Goddard Space Flight Center and the University of Maryland maintain a test bed as a
continuation of the research presented at MSST03, and in order to support new
evaluations of shared file systems and IP SAN technologies within the Metropolitan-Area
Network established by the Mid-Atlantic Crossroads. Figure 1 illustrates our test bed.

Our test bed is built on McData Eclipse Storage Routers installed at NASA Goddard
Space Flight Center (GSFC) and the University of Maryland Institute for Advanced

- Computer Studies (UMIACS). Each site has existing high-end computing, data storage,
and visualization systems in order to support experimentation on specific inter-site S A N
applications. GSFC and UMIACS are connected with Gigabit Ethernet links through the
Mid-Atlantic Crossroads Meta-pop (Max) and high-speed wide-area connectivity
through Internet2.

In our test bed, we are particularly interested in developing mechanisms for managing IP
SANS that span multiple independent administrative organizations, because distributed
administration has been a particularly difficult aspect of our previous work. Current

management systems lack mechanisms to establish strong authentication and fine-grained
trust between participating sites. Instead, most command-line interfaces provide just a
few levels of authorization, such as read-only, read-write or administrative access. We
also lack mechanisms to deal with the dynamic nature of inter-site SANS in which we
assume that networks will change and sites will occasionally reconfigure or expand their
environment. Finally, we need mechanisms that can reduce the level of inter-site
coordination and administrative intervention needed to configure and maintain IP SAN.

This paper presents a prototype management system that allows participating sites to
delegate administrative authority for specific administrative functions using secure Web
Services. We discuss the overall design of our management system, its software
components and security model, and a sample administrative application that will operate
in the GSFC-UMIACS IP SAN test bed.

Our approach: Applying grid technologies to inter-site SAN
management

The overall approach of our prototype management system is to apply Grid-computing
technologies to the problem of delegating administration and managing trust between
participants in an inter-site SAN. Each site runs a management server that supports
remote procedure calls for two secure web services: an “invocation” service that allows
authenticated users to invoke trusted administrative scripts at remote sites and a “rights”
web service that applies fine-grained authorization policies to allow or deny authenticated
user requests. Several technologies are needed to secure the system: all of its
communications are encrypted using the Secure Sockets Layer, and both of its web
services are secured according to the OASIS Web Services Security Specification (WS-
Security). A Public Key Infrastructure (PKI) identifies participating users, sites, and
services with X.509 certificates.

In practice, our system allows users to remotely execute shared administrative scripts
through a command-line interface to the Invocation Web Service in order to manage
systems at remote sites in an inter-site IP SAN. Their requests are authenticated through
the Public Key Infrastructure and authorized by the Rights Web Service that maintains
the database of the site’s trusted users and their permissions. Our system also provides an
interface that allows each site to independently define what administrative scripts they
would like to share with specific remote users. Figure 2. Provides an overview of the
major software components in our management system, their functionalities, and their
relationships.

Figure 2. Software Components of the Management System.

The main goals of our prototype are to demonstrate:
methods for strong authentication and fine-grained authorization that can support
distributed storage management,
a software environment in which local sites can retain control of their own
resources even while delegating some administrative tasks to remote
collaborators,
tools to reduce the level of inter-site coordination and administrative intervention
required to manage an IP S A N that operates between collaborating but
independent organizations.

Our prototype addresses each of these goals with software components that have been
implemented in the Grid Computing community.

Description of Software components

The Management Server
The core of our system is the management server, which handles all of the inter-site
management requests through its secure web services, manages the authorization
databases, and executes the administrative scripts on behalf of remote users. It is built on
a Secure Sockets Layer-enabled Apache Tomcat Server [7] with Java 1.5 and the
Unlimited Strength Cryptography extensions fiom Sun Microsystems. We configure
Tomcat with a number of software packages and security enhancements to support:

0 Secure transport based on mutually authenticated connections through the Secure
Hypertext Transport Protocol (HTTPS) in which both the client and the server
must present trusted X.509 certificates in order to communicate,
Apache Axis- an implementation of the Simple Object Access Protocol (SOAP)
recommendation to the W3C that we use as a messaging layer to implement our
Web Services. [SI
Apache WSS4J- an implementation of WS-Security that we use to implement
message level security for our web services. [9] [101
Security constraints within the Tomcat server that limit access to the web services
to trusted users that have valid entries in our authorization database.

0

0

0

The software configuration that supports secure web services on the management server
is very similar to the Producer-Archive Workflow Network’s (PAWN) Receiving Server
that was presented at MSSTO5. [1 11

The management server also hosts a MySQL relational database management system
E121 as an authorization database. It contains a table of authorized users, which we
represent by X.509 Subject Identifiers, and a table of permissions that grant or deny those
users access to specific administrative scripts. Both Tomcat and the Rights Web Service
use these databases to authorize user requests.

The Invocation Web Service
The invocation web service provides the programmatic interface for our system’s remote
management capabilities. When a user requests the remote execution of an
administrative script, the Invocation Web Service processes the request as follows:

1. it receives the request as a SOAP message over a mutually-authenticated and
encrypted SSL connection,

2. it uses WSS4J to ensure that the message is secure. It confirms that the message
is signed by a valid X.509 certificate and that it has not been tampered with in any
way.

3. It calls the Rights Web Service to confirm that the user is trusted and authorized
to call the requested administrative script.

4. It checks the requested scripts arguments and inputs for disallowed characters or
potentially malicious strings.

5. It executes the requested script and returns the standard output and error to the
remote user.

It also provides an interface with which users can browse available scripts and an
interface that allows each site to manage the repository of scripts that they wish to share.

The Script Repository
Our prototype administrative scripts are written in Expect [131, because it provides a
convenient interface for configuring the McData Eclipse Routers using their command
line interface through the telnet protocol. Expect is an extension of tcl that is frequently
used by systems administrators to automate complex configuration tasks through terminal
interfaces [141.

In our environment at the University of Maryland, most administrative scripts are
implemented in Perl, Expect, or Shell Scripts, and we wanted to ensure that local
administrators would be able to easily author, check, and update the scripts as needed.
Our approach also allows us to share third-party binary programs whose functionality we
might not be able to replicate in a home-grown program. Administrators and vendors
already have existing tools for troubleshooting and managing filesystems, SANS, and IP
networks, and we wanted to be sure that they could be use in our environment whenever
it was possible and practical.

The careful development of administrative scripts is an important aspect of the system’s
overall security model. The security model for our administrative scripts is very similar

to Common Gateway Interface scripts, which can be particularly vulnerable to input
injection attacks if they are not carefully written and called. Given their administrative
privileges on the S A N routers, it is particularly important that all of the shared
administrative scripts be carefully written and reviewed before they are put into service.

The Rights Web Service
The rights web service provides the programmatic interface to determine what remote
users and sites are authorized to access each administrative script. It allows us to
associate certificate common names that identify users with the scripts that they are able
to invoke through the invocation web service.

The rights web service’s is responsible for the following steps:

1. It re-checks the validity of the client’s certificate, even though the Tomcat server
has validated the certificate during mutual authentication.

2. It checks that the client certificate is not listed in the Certificate Revocation List
published by our Certificate Authority.

3. It extracts the Common Name ffom the client’s X.509 certificate and queries the
database to be sure that it is listed as a trusted user in our authorization database.

4. It ensures that the trusted user is authorized to invoke the requested administrative
script by querying the permissions table in out authorization database.

It should be noted that in a large grid installation, something like the Community
Authorization Service would be a better choice because it would support greater
functionality as an authorization system. However, we implemented a more basic
authorization service because our test-bed is only intended to support just tens of sites
with a relatively small number of test users.

The Classads Registry
We are also developing a central registry of administrative information about the

part of the Condor project at the University of Wisconsin.[151 Classads allow us to
accurately describe resources in our distributed S A N as well as policies that should
govern their use. The ClassAds language is particularly attractive for our administrative
registry because it allows administrators at the invocation site to control how their site is
described and the policy requirements for using their resource.

. distributed S AN based on the Classified Advertisements (classads) library developed as

Ongoing Deployment in GSFC-UMD Test bed

A Sample Application
GSFC and UMIACS have developed and tested the prototype management framework
and are in the process of deploying management servers in their IF’ S A N test bed. One of
the main goals of this effort is to demonstrate the ability of our software to grant authority
to a user so that he or she can bootstrap access to a remote S A N device and subsequently
tear down that connection without any administrative intervention. In this section, we

describe the configuration of the management system in our test bed, and our approach to
delegate administrative control of a SAN LUN from the test SAN at UMIACS to a user at
GSFC.

Preparing the Local SAN environments at UMD and GSFC
In order to prepare the existing SAN environments for interaction with the new
management system, each site’s administrative staff will need to complete the following
tasks:

Strictly partition shared SAN devices from private SAN devices through a
physical reconfiguration or through Zone or LUN-masking policies. Isolating
shared resources helps each site retain control and ownership of their own
systems. In this configuration, no SAN-attached device can ever be accessed by
remote sites unless it is manually configured into the shared zone.
Storage Routers must be configured for basic connectivity and functionality.
Each router needs a public Ethernet connection that will cornmunicate with other
storage routers to move data across the inter-site SAN and a private Ethernet
connection that needs to be isolated and protected from untrusted networks so that
we can use it to safely administer the SAN Router using unencrypted protocols
like Telnet or SNMP.
Register and configure a unique mSAN identifier for each Storage Router and a
unique Zone identifier for each shared SAN zone. Otherwise, identifier conflicts
can occur and iFCP connections will fail.
The Management Servers needs to be configured. It needs a public interface that
remote users can access and it needs to be connected to the SAN router’s private
management network so that it can access the SAN router’s command-line
interface. It also needs to be configured with the router’s login usei-name and
password.

Figure 3. illustrates how the test bed will be prepared for our management system. In
particular, it shows the division of shared and private SAN zones, as well as how the
management servers and participating hosts connect to each other over IP networks and
to the SAN Routers. It also depicts the separation of the private management network at
each site and the public network connectivity between each site.

Figure 3. Preparing the GSFC-UMD S A N Test bed for our Management Software.

Manually Sharing LUNS between UMD and GSFC
If we were to manually bootstrap an inter-site S A N connection between zones at UMD
and GSFC without our management system in place, we would take the following steps:

1.

2.
3.

4.
5.

6.

7.

We would determine the IP address and mSAN id of both the GSFC and
UMIACS SAN routers.
We would ensure that the S A N routers have different mSAN ids.
We would agree on a common zone id to represent our new inter-site S A N on
both storage routers. This zone id needs to match for bi-direction connectivity
within the inter-site SAN, so this needs to be agreed upon before any
configuration takes place.
Both sites would independently create a new zone with the common zone id.
Both sites would connect their storage router's R-PORT with the S A N fabric
that they want to share, and associate the R-PORT with the newly created
zone.
UMIACS would add the GSFC S A N Router's IP and mSAN identifier to the
access control list for the iFCP connections on our storage router, and we
would specify that we will share our new zone over the connection.
GSFC would add the UMIACS S A N Router's IP and mSAN identifier to the
access control list for the iFCP connections on our storage router, and we
would specify that we will share our new zone over the connection.

This is what we have done in the past, and it is easy to see how error prone this process
can be between multiple sites with so much coordination of administrative information by

phone and email. We feel that the limitations of these current management systems
present a serious barrier to developing large-scale inter-site SANs.

Sharing LUNS between UMD and GSFC using the Management
System.
Our management system simplifies the setup process significantly because it provides a
secure registry for all of the requisite administrative information including IP addresses,
mSAN identifiers, and Zone identifier for the participating S A N routers. Administrators
can browse the available remote resources to support manual configurations of existing
resources and be assured that they are choosing settings that will not conflict with other
sites. Scripts can access the administrative information programmatically to support
automatic configuration of new systems. In fact, new zones and S A N routers that are
installed into the framework require even less coordination, because they can register
unique identifiers when they are first installed.

The management system in our test bed will also demonstrate dynamic reconfiguration of
the shared SAN. In the manual configuration described above, sharing LUNs between
UMIACS and GSFC requires separate administrative intervention on both sides of the
connection to share and unshared a LUN, and, unfortunately, both administrators end up
running the same commands over and over again on their respective SAN Routers.
Scripting these repetitive commands and making them available to trusted users through
the Invocation Web Service enables users to reconfigure the inter-Site SAN and to access
remote SAN devices as needed without any administrative intervention. We are excited
about the possibilities for this type of dynamic inter-site storage area network.

Summary
Our pilot system shows some ways in which widely used web and Grid Computing
technologies can be successfully employed to support the complex security issues and
trust relationships that arise in inter-site SAN installations.

Acknowledgements
We would like to acknowledge the many engineers at GSFC and UMIACS who have
supported this work, especially Hoot Thompson, Bill Fink, Paul Lang, Mike Van Opstal,
Gary Jackson, Steve Willet, and Mike McGann.

. References:

1. T. Clark, “Designing Storage Area Networks: A Practical Reference for Implementing
Fibre Channel and IP SANs.” Addison Wesley Professional, March 2003

2. H. Yang, “Fibre Channel and IP S A N Integration.” MSST 2005: 101-1 13

3. Phil Andrews, Tom Sherwin, Bryan Banister, “A Centralized Data Access Model for
. Grid Computing”. MSST 2003: 280-289

4. Hoot Thompson, Curt Tilmes, Robert Cavey, Bill Fink, Paul Lang, Ben Kobler:
"Considerations and Performance Evaluations of Shared Storage Area Networks at
NASA Goddard Space Flight Center." MSST 2003: 135-

5. Phil Andrews, Bryan Banister, Patricia A. Kovatch, Chris Jordan, Roger L. Haskin:
Scaling a Global File System to the Greatest Possible Extent, Performance, Capacity, and
Number of Users. MSST 2005: 109-1 17

T. Clark, IP S A N S : A Guide to iSCSI, iFCP, and FCIP Protocols for Storage Area
Networks [CLARK-IPSANs-Guide]

6. Phil Andrews, Patricia A. Kovatch, Chris Jordan: Massive High-Performance Global
File Systems for Grid computing. SC 20005: 53

7. The Apache Tomcat Server, http://tomcat.apache.org/.

8. The Apache Axis Project, hl&://ws.apache.ordaxis/

9. The Apache WSS4J Project, httn://ws.apache.orp/wss4i/

10. A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo. Web Services Security:
SOAP Message Security, Oasis Standard 200401, March 2004.

1 1. Joseph JaJa, Mike Sinorul, Fritz McCall, Yang Wang: Scalable, Reliable Marshalling
and Organization of Distributed Large Scale Data Onto Enterprise Storage Environments.
MSST 2005: 197-201

12. The MySQL Database, httD://www.mysql.com/

13. Libes, D., "Exploring Expect: A Tcl-Based Toolkit for Automating Interactive
. Applications", O'Reilly & Associates, January 1995.

14. Libes, D., "Using Expect to Automate System Administration Tasks," Proceedings of
the Fourth USENIX Large Installation Systems Administration (LISA), Colorado
Springs, COY October 17-19, 1990.

15. The Condor Project, http://www.cs.wisc.edu/condor/

